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1    Overview of Mathematical Accomplishments 

We present a study of the harmonic analysis of finite abelian groups A and finite 
groups G of the form A-§ B , the semidirect product of a normal abelian group 
A with an abelian group B. The theory easily generalizes to finite groups A-§ H, 
where A is a normal abelian group and if is an arbitrary group whose harmonic 
analysis is known. In particular, it includes finite groups A<$(B<$C), where 
A, B and C are abelian subgroups. This rich class of finite groups contains all 
crystallographic groups. 

For the most part group algebras will be taken over the complex field (split 
case), but a section on group algebras of abelian groups over finite fields has been 
included as an indication of the methods that must be developed for applications 
to coding theory. 

The restriction to groups G = A-$B and their generalizations permit har- 
monic analysis to proceed by abelian group character theory. This results in 

• a direct link with abelian group harmonic analysis and consequently with 
physical interpretation. 

• automatic procedures for constructing G-invariant, irreducible G-invariant 
and direct sum decompositions of CG, the group algebra of G over C, into 
irreducible G-invariant subspaces. 

• algorithms for computing bases of irreducible G-invariant subspaces and 
bases compatible with direct sum decompositions of CG into G-invariant 
and irreducible G-invariant subspaces (spectral bases). 

• fäsT algorithms for representing data, i.e., elements in CG, over spectral 
basis. 

• an extensive new class of fast unitary transforms for data analysis. 



2    Introduction 

Prom a mathematical perspective, a significant part of classical digital signal 
processing (DSP) can be viewed as topics in finite abelian group harmonic anal- 
ysis [ 1, 6, 16, 4]. Fundamental DSP operations such as convolution and the 
Fourier transform can be identified with group algebra multiplication and group 
algebra direct sum decompositions into irreducible group invariant subspaces. 
This interplay, often implicit, has been responsible for fast algorithms such as 
the FFT [ 7], the use of FFT in computing large size convolutions and correla- 
tions, and more recently for the development of polynomial transforms [ 27, 25] 
for computing convolutions. 

However pleasing, at least to the mathematically inclined, and useful this 
group theoretic approach to DSP, it is based on a seemingly magical relationship 
between DSP applications and finite abelian group harmonic analysis and the 
simplicity of this harmonic analysis. This magic can be explained by the power- 
ful role played by abelian group characters in providing all that is required for 
finite abelian group harmonic analysis and the physical interpretation of these 
characters as frequency. 

For some mathematicians, this group interpretation of DSP has raised the 
potential of an equally important application of nonabelian group harmonic 
analysis to DSP, especially in the construction of group transforms and group 
filers generalizing the classical Fourier transform and convolutional filters. The 
works of R. Holmes [ 14, 15], M. Karpovski and E. Trachtenberg [ 18] are the 
basis of much of the research in this direction. Similar ideas in coding theory 
have been introduced by F.J. Mac Williams [ 21]. These efforts have shown 
some promise but for the most part are more interesting to mathematicians 
than DSP engineers. A more successful application has been to fast algorithm 
design [ 22, 23, 2, 3, 10]. 

During the last ten years considerable effort has taken place to extend the 
success and range of applicability of nonabelian group methods to the design of 
new filters and spectral analysis methodologies [ 8, 9, 5], as an image processing 
tool [ 11, 13, 19, 20] and most recently as an image processing tool combined 
with graph theoretic modeling of image data [ 12, 24]. 

Many efforts at finding a significant role for nonabelian group theory in DSP 
and imaging applications as well as in coding and communication theory have 
been limited by some or all of the following. 

• The choice of an appropriate group or groups in a given application is not 
obvious. Often the groups considered are those which are best known to 
the researcher. 

• The lack of a large class of groups whose harmonic analysis is sufficiently 
understood for meaningful applications. Often the dihedral group with or 
without justification is the test example. 



• The need to develop a conceptual framework which relates group harmonic 
analysis to physically interpretable results. 

• Fast algorithms may exist but are difficult to code as they do not easily 
lend themselves to modification. 

• Relevant models for applications which are not only a rephrasing of known 
methods or what is immediately available. 

In the following three sections, we present a detailed account of finite abelian 
group harmonic analysis. This theory is well-known to most mathematicians but 
may not be familiar to DSP engineers. It is the starting point for the nonabelian 
group harmonic analysis developed in this work since as we will see both the 
abelian group and nonabelian group theories share many common features. 

The finite nonabelian groups in this study have the form G = A-$B, the 
semidirect product of a normal abelian group A with an abelian group B. Re- 
sults easily extend to finite groups A$ H, where H is an arbitrary group whose 
harmonic analysis is known. This includes finite groups of the form A-^(B^C), 
where A, B and G are abelian groups and in particular all crystallographic 
groups. In the applications part, we will see how these nonabelian groups pro- 
vide for new classes of imaging and DSP models. 

The language of group algebras usually over the complex field will be used 
throughout. Some readers may be more familiar with the identification of the 
group algebra CG with the space of all complex valued functions on G under 
G-convolution. Harmonic analysis over G usually includes a description of the 
(left) G-invariant and irreducible G-invariant subspaces and direct sum decom- 
positions-of CG into irreducible G-invariant subspaces. 

For an abelian group A, complete answers to these problems can be given 
in terms of the characters of A. Moreover, these descriptions are especially 
simple. For example the irreducible A-invariant subspaces coincide with the 
one-dimensional subspaces spanned by the characters. The characters of A 
determine an orthogonal basis of CA and the finite Fourier transform relates the 
delta basis A of CA with the basis of characters of A. This is an extremely nice 
answer for applications since the characters of A can be physically interpreted 
as frequencies. 

For finite groups A <$ B, the characters of A and B play an equally important 
but more complicated role in the harmonic analysis of A-^B. This theory is 
developed in section 6 and extensions to A<$ (B$ C) and beyond will be devel- 
oped in time. We will have as a result a large class of nonabelian groups with 
the potential of wide applicability to DSP and imaging whose harmonic analysis 
is known in detail. This harmonic analysis is based on abelian group characters 
which directly link this harmonic analysis to familiar DSP and imaging concepts. 
Moreover we have developed 

• algorithms for computing bases of irreducible G-invariant subspaces and 



bases compatible with direct sum decompositions of CG into G-invariant 
and irreducible G-invariant subspaces (spectral bases). 

• fast algorithms for representing data, i.e., elements in CG over spectral 
bases. 

• an extensive new class of fast unitary transforms for data analysis. 

The direct sum decompositions of CG studied in this work are closely related 
to but are significantly different from those leading up to the Fourier transform 
of CG [ 10, 26]. Our decompositions are finer but are not generally uniquely 
determined. 

Throughout the mathematics part A and B denote finite abelian groups with 
composition given by multiplication. The identity is always denoted by 1 and 
the inverse of x € A by x~l. The order of a set is the number of elements in 
the set. 

For much of the general theory K denotes a field, finite or infinite, whose 
characteristic does not divide the orders of A and B. However for DSP and 
imaging applications, K is the field of complex numbers. A section on group 
algebras of A over finite fields is included as an indication of the methods used 
in applications to coding theory. 
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3    Characters of Finite Abelian Groups 

A mapping r : A —> Kx is called a character of A over K if r is a homomorphism 
of the group A into the multiplicative group K* of nonzero elements in K, 

r(xy) = r(x)r(y),   x, y € A 

Denote by c/i(.A, if) the set of all characters of A over K. 
For each x € .A, denote by gp^(a;) the group generated by a; in A, 

gP*(aO = {l> *> •■•> z*"1}. 

where the order R of gp^(x) is the smallest positive integer satisfying xR = 1. 
We call R the order of x. 

If r is a character of A over K and ISA, then T(X) completely determines 
the values of r on gpA(x) by 

T{X
1
)=T(X)

1
,      ZeZ. 

In particular, xL = 1 implies r(x) is an L-th root of unity in K. 
Denote by UN(K) the multiplicative group of all iV-th roots of unity in 

K. The order of UN(K) divides N. Since every x e A satisfies xN = 1, 
T{X) € UN(K), for every character r of A over Ä". 

A splits over Ä" if the number of characters of A over K is the order of A. 
We will eventually show that this is the maximal number of possible characters 
of A over K. 

In the_following examples Cjv is the cyclic group of order TV having generator 
x. 

Example 1 There exists N characters of CN over C defined by 

Tn{x) = e2*i%,     0<n<N. 

The multiplicative group UN(K) is a cyclic subgroup of Kx whose order L 
divides N. If 7 € UN{K), then 7L = 1. The smallest positive power of 7 equal 
to 1 is called the order of 7. Denoting a generator of UN{K) by a, we have that 

C/AA(Jf) = {l,a)...,a
1'-1} 

and a has order L. We say that a is a primitive N-th root of unity if the order 
of a is N. K has a primitive AT-th root of unity if and only if there exists exactly 
N N-t\i roots of unity in K. 

CN splits over K if and only if K has a primitive AT-th root of unity a. The 
AT characters of CN over K are defined by 

T„(X) = an,      0 < n< N. 



Example 2 cyclotomics 

Suppose K = GF(pR), the field of order pR, p a prime. Since Kx is a 
cyclic multiplicative group of order pR — 1, a generator a of K* is a primitive 
(pR — l)-th root of unity and the order of any power of a must divide pR — 1. 

If JV divides pR — 1, then 

7 = aM,     pß - 1 = MJV, 

is a primitive JV-th root of unity in K*. We see that CN splits over GF(pR) if 
and only if 

pfl = 1 mod JV. 

In particular, if CN splits over GF(pR) then p does not divide AT. 

Example 3 The finite field K — GF(27) has a primitive 26-th root of unity a, 

K*={l,a,...,a25} 

with a26 the smallest positive power of a equal to 1. 

Example 4 Continuing the preceding example, a2 has order 13, a13 has order 
2 and ar has order 26 whenever r is relatively prime to 26. 

Example 5 Ce and Cg split over GF(25). 

Example 6 d splits over GF(9). 

In general, the number of characters of CN over K is equal to the number of 
iV-th roots of unity in K. If UN(K) has order L and a is a generator of Uff(K), 
the L characters of CN over K are defined by 

Ti(x)=al,      0<1<L. 

If .K" does not contain a primitive N-th. root of unity, then the number of char- 
acters L of CAT over K is less than JV. In fact, L is a proper divisor of JV. 

Example 7 R has two roots of unity, 1 and — 1. If JV is odd, 1 is the only JV-th 
root of unity in R and CN has exactly one character over R. If JV is even, 1 and 
-1 are the only JV-th roots of unity in R and CN has exactly two characters 
over R. 

Example 8 GF(5) has exactly two 2-th roots of unity, 1 and 4, and four 4-th 
roots of unity, 1, 2, 3, 4. There are exactly two 6-th roots of unity 1 and 4, 
and exactly two characters of Cß over GF(5). There are exactly four 8-th roots 
of unity, 1, 2, 3, 4 and exactly four characters of C% over GF(5). In general if 
JV = 2 mod 4, there are exactly two characters of CN over GF(5) and if JV = 0 
mod 4, there are exactly four characters of CN over GF(5). 

8 



For K = Q or K = GF(pR), p a prime not dividing N, the condition that 
CN splits over K places severe conditions on N. One solution is to construct 
a minimal field extension E of K over which CN splits. E contains K as a 
subfield, has a primitive JV-th root of unity and there exists no proper subfield 
of E containing K having a primitive iV-th root of unity. There is an elaborate 
theory for construction such a field extension over an arbitrary field K whose 
characteristic p does not divide N. The resulting field extension E is called the 
splitting field of the polynomial xN — 1 over K and is an example of a Galois 
extension. We will say more about Galois extensions over Q and GF{pR) in 
chapter 4. 

For the fields Q and GF(pR), the construction of minimal field extensions 
over which CN splits is simple and we will restrict our attention to these cases. 

For Q, the cyclotomic field Q(£N), £N = e2,rif, is the minimal field exten- 
sion of Q over which CN splits. For GF(pR) the construction is slightly more 
involved. For simplicity we consider the case GF(p), where p does not divide 
N. 

Viewing p as an element in Z/iV, since p and N are relatively prime, p is 
in the multiplicative group U(N) of units of Z/N and some power of p equals 
1 mod N. The smallest such power R, called the order of p in U(N), defines 
the minimal extension field GF(pR) over which CN splits. In general, for any 
integer s > 0, there exists a minimal extensional field of GF(ps) over which CN 

splits. 

Example 9 GF(25) is the minimal extension field of GF(5) over which Ce and 
Cs splits. GF(9) is the minimal extensional field of GF(3) over which d splits. 

Consider the direct product CNX X CN2 of cyclic groups CN,. and CN2 ■ De- 
noting generators of CNX and CN2 by X\ and X2, every element in CNX X CN2 

can be written uniquely in the form 

xi1*?,      0<n1<N1,0<n2<N2. 

The characters of C^ x CN2 over K are completely determined by the characters 
of CNI and CN2 over K. If r is a character of Cpfx X CN2 over K, we can define 
characters Ti and r2 of CN^ and CN2 over K by 

Ti(zi) = T(X),      T2(X2) = T(Z2). 

r is completely determined by T\ and r2 by 

rix^x?) = T1(zi)niT2(:r2)n2,      0 < n, < Nu 0 < n2 < JV2, 

and we can write T = ri (8» r2. Conversely, if rj and r2 are characters of CNX 

and CN2 over If, then ri <g> r2 is a character of Cjva x Cjv2 over K. 
CNX x CV3 splits over K if and only if CNX and CW2 split over K. This 

will be the case if and only if K has a primitive .A^-th root of unity ct\ and a 
primitive AT2-th root of unity Q2. 



Example 10 The ATiiV2 characters 

rn,      n = (ni,n2), 0 < ni < N\, 0 <n2 < N2, 

of CNX x Cpj2 over C are defined by 

Tni*?1*?3) = e^^e2™^,      0 < mi < Nu 0 < m2 < AT2. 

If if has primitive Ni-th and iV2-th roots of unity ai and a2, then the N\N2 

characters 
rn,      n= (ni,n2), 0 < ni < Ni, 0 <n2 < N2, 

of CjVj x CN2 over if are defined by 

Tm{xfx2
n2) = arlimia?m\      0<m1<N1,0<m2<N2. 

Denote the least common multiple of N\ and N2 by [Ni,N2]. aia2 is a 
primitive [ATj, AT2]-th root of unity. Generally if K has a primitive [N\, 7V2]-th 
root of unity a, then 

ai = aLl, a2 = aL*,      [ATj, 2V2] = Lj Ni = L2 JV2 

are primitive iVi-th and JV2-th roots of unity in K. 
K has primitive JVi-th and iV2-th roots of unity if and only if K has a 

primitive [ATi,i\T2]-th root of unity. CN1 X CN2 splits over K if and only if K 
has a primitive [Ni, iV2]-th root of unity. 

We-can state the condition for CNX 
X

 GN2 to split over K completely in terms 
of the abelian group defined by CNX X CJV2 and not on its representation. Since 
the order of each element in C^ divides N\ and the order of each element in 
CJV2 divides N2, [Ni, N2] is the least common multiple over all orders of elements 
in CNX x CN2. 

In general the number of characters of CN1 X CN2 
over K is the product of 

the number of characters of CVX over K with the number of characters of Cjv2 

over K. This number is equal to LiL2 where L\ is the number of iVj-th roots 
of unity and L2 is the number of iV2-th roots of unity in K. If ot\ and Q2 are 
generators of UN^K) and UN2(K), the L\L2 characters of CNX X CJV2 over K 

rh     l = (lul2),0<h<Li,0<l2<L2, 

are given by 

nix^x^2) = a'1
imic42m2,      0 < mi < Nu 0 < m2 < N2. 

The results of this section easily extend to an arbitrary finite number of 
cyclic groups 

A = CNl x •■• x CNR. 

10 



Each character r of A over K is uniquely represented by 

r = TI <g> • • ■ <g> Tfi, 

where rr is a character of CWr over AT, 1 < r < R. A splits over K if and only 
if Cwr splits over K, 1 <r < R and in general the number of characters of A 
over K is equal to L = Li • • ■ Lj?, where Lr is the number of characters of CV,. 
over K, 1 < r < R. Since every finite abelian group A is the product of a finite 
number of finite cyclic groups, this completes the description of Ch{A : K) for 
every finite abelian group A and field K. 

4    Group algebra of A 

The group algebra KA of A over K is the K-vector space of all formal sums 

under 

x£A 

af=Y,(af(x))x,      aeK,f£KA, 
xeA 

with if-algebra multiplication 

fs = E (E fWfa^v)) 2/.    /.setfA 
yeA \x£A / 

The additions and multiplications inside the brackets are taken in K. Since A 
is abelian, the Ä"-algebra multiplication is commutative. 

Denote by L(A;K), the K-vector space of all X-valued functions on A. 
Every / G L(A : K) defines a formal sum in KA 

f = j2 /(*)* 
xeA 

and we can identify the K-vector space KA with the K-vector space L(A;K). 
The multiplication / • g in KA corresponds to the standard convolution in 
L(A;K) 

f * 9(y) = E fWaix^y),     y<=A,f,ge L(A; K). 
x€A 

11 



Under this identification the delta function 6y, y G A corresponds to the formal 
sum in KA 

Y^ Sy{x)x 
x€A 

which we denote by y. In this way, we can view A as a subset of KA. A is a 
basis of the .ff-vector space KA and KA has dimension N, the order of A. The 
identity 1 in A is the identity of the if-algebra KA. 

We will usually use the term basis for any subset of vector space which if 
ordered is a basis in the usual sense. In summation expressions, there is no 
loss in doing so. However whenever matrices are involved, an ordering must be 
specified even if implicitly. 

For y € A and / e KA 

yf = Yl f(x)vx = J2 f(y~lx)x- 
x£A x£A 

We call yf the translation of / by y. The term f(y~1x) in the right-hand 
summation identifies yf with the usual definition of translation in engineering 
terminology. For y € A, the operator L(y) of KA defined by 

L(y)f = yf,     f € KA, 

is a linear isomorphism of the K-vector space KA and we have 

L(zy) = L{z)L(y),      z,yeA 

Liz-1) = Liz)'1,      z<=A 

where L(z)L(y) and L(z)-1 denote composition and inversion of operators in 
KA. Observe that for every y € A, L(y) acts as a permutation on the basis A 
of KA. 

Example 11 Ordering C4 by successive powers of a generator x, 

ll   Ola   mjU        •   JL J 

the matrix of L[xm) relative to the resulting basis C4 of KC4 is S™, 0 < m < 4, 
where 54 is the 4-point cyclic shift matrix. 

In general, ordering Cjv by successive powers of a generator x, the matrix of 
L(xm) relative to the resulting basis CN of KCN is Sp}, 0 <m < N, where 5^ 
is the AT-point cyclic shift matrix. 

Example 12 Ordering C4 x C3 by first ordering C4 and C3 by successive powers 
of generators X\ and x-i and then by imposing the lexicographic ordering on 
C4XC3 

1, X2, Xn] X\, XjX2, X\Xo\ X-\, XIXQ) XjS^i ^1? *^1*^2> •^l^'2' 

the matrix of L(x™lx™2) relative to the resulting basis C4 x C3 of K(d x C3) 
is S?1 ® Sp, 0 < mi < 4, 0 < m2 < 3. 
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In general ordering the direct product 

CVi x • • • x CNR 

by first ordering the factors CVr by successive powers of generators xr, 1 < r < 
R, and then by imposing the lexicographic ordering on the direct product, the 
matrix of 

relative to the resulting basis C^ x • ■ • x CVB of K{CNX X • • • X CNR) is 

Denote by GL(KA; K) the group of linear isomorphisms of the Jf-vector 
space KA. The mapping 

L : A -> GL(KA; K) 

is an isomorphism of the group A into the group GL(KA,K). We say that L 
is a representation of A on KA and call L the regular representation of A. 

A subspace V of the K-vector space KA is called A-invariant if for each 
y£A 

yV = {yf-.feV}c V. 

If V is yl-invariant and /(x), x £ A, is a, coefficient set for a formal sum in V, 
then for each y € A, f(y~1x), x £ A, is also a coefficient set for a formal sum 
in V. A-invariant subspaces of KA can be identified with translation-invariant 
subspaces of A'-valued functions of A. 

Example 13 The subspace of KA spanned by the formal sum 

xeA 

is the A-invariant subspace of KA consisting of all formal sums in KA unchanged 
by the action of the operators L(y), y £ A. 

For a subgroup B of A, we say that a subspace V of the if-vector space KA 
is ß-invariant if for all y £ B, 

yVcV. 

The 5-invariant subspace of KA 

{f£KA:yf = /, for all y £ B} 

can be identified with the subspace of B-periodic if-valued functions on A. 
For g £ KA define the operator L(g) of KA by 

L(g)f = gf,     f£KA. 
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Since 

L(g)f = gf = J2 9(v)M) = £ 9(y)L(y)f =   £ g(y)L(v)  f 
y€A y€A \v€A ) 

we have that 
£(<?) = £ff(y)£(y) 

y€A 

linearly extends the domain of definition of L from A to KA. In particular, the 
two definitions coincide on A. 

£(<?)> 9 £ KA) is a homomorphism of the K-vector space KA but is not 
necessarily an isomorphism as is the case with L(y), y G A. We can have 
gf = 0 for /, g G KA with both / and g not zero. 

Example 14 Continuing example 11, the matrix of L(g) g G K{Ci), relative 
to the basis d is 

c4(<?) = x>(*m)sr 
m=0 

Defining g G K4 by 

we have 

g = b(*m)]o<m<4 

C4(g)=[s   54g   Sfe   5|g]. 

If we take g = ][^yec J/i then C4(g) is the singular 4x4 matrix of all ones. 

In general, ordering CN by successive powers of a generator x, the matrix of 
L{g), g G KCN, relative to the resulting basis CN is 

CN(g)=Y,g(xm)S^. 
m—0 

Defining g G KN by 
g = [g(xm)}Q<m<N, 

we have 
CN(g) = [s   SNg   ■■•   S^-'g]. 

Linear combinations over K of powers of SN are called JV-point circulant 
matrices over K. Such matrices are completely determined by their 0-th column. 

CN can be realized relative to the basis CN as the matrix product of the 
circulant matrix CTV(ö) with the vector f formed by ordering the values of / 
according to successive powers of the generator. 
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Example 15 Continuing example 14, for / and g in KC4, the product h = fg 
is given by 

h = C4(fl)f. 

Example 16 Continuing example 12, the matrix of L(g), g € K{C$ x C3) 
relative to the basis CA x C3 is 

Tni=0m2=0 

Denote by C{m) the 3x3 circulant matrix having 0-th column 

0<m<4. g{x?x2) 
9(xf4) 

The matrix of L(g) can be written as 

c(0) c(3) c(2) c(l) 
c(l) c(0) c(3) c(2) 
c(2) c(l) c(0) c(3) 

_c(3) c(2) c(l) c(0) 

which is an example of a block-circulant matrix having circulant blocks. 

Denote by gl(KA)K) the /f-algebra of all homomorphisms of the K-vector 
space K-A. The mapping 

L : KA -» ^{(ÜTX; Ä") 

is a if-algebra isomorphism of UTA into gl(KA;K). 
For an A-invariant subspace V of if A and / € V, we have for all g € KA, 

L{g)f = Y,9{y)L{y)f £V 

and V is ifA-invariant.   The equivalence of A-invariance and XA-invariance 
will be used throughout this work. 

A homomorphism T of the K-vector space KA is called A-invariant if for 
all y £ A, 

L(y)T = TL(y). 

Example 17 L(g), g € KA is A-invariant. 

15 



In fact, the operators L(g), g € KA are the only ^4-invariant homomorphisms 
of KA. For an ^-invariant T and / G KA 

yT(f) = T(yf),     y € A. 

In particular, with / = 1 in KA, 

T(y) = T(l)y 

and 

TU) = Y, Mnv) = T(!) E /(w)v = rw- 
y<=A y€A 

The claim is proved since 

T = L(g),     g = T(l). 

5    Fourier transform over A 

Decompositions of KA into direct sums of A-invariant subspaces play two im- 
portant roles: algorithm design for computing products in KA and spectral 
analysis. The Fourier transform over A is the simplest and most frequently 
occurring example. 

A character T of A over K determines the formal sum in KA 

T = 2_. T"(x)x. 
x£A 

Multiplication of characters will always be taken in KA with the warning that 
in many places, another multiplication is defined under which ch(A;K) is a 
group. The importance of characters in studying yl-invariant subspaces of KA 
is contained in the following result. 

Theorem 1 For f € KA and r a character of A over K, 

fr = f(r)T, 

where /(r) € K is given by 

/(r) = E/(vMtf_1)- 
y&A 

Proof   For y € A 

yT = YT(x)yx = YlT(y~lx)x = T(y~1)J2TWx 

x€A x£A x€A 

=    T{y~l)T. 
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The theorem follows from 

/r = £ f(y)(yr) =   £ fiy^y'1) ]r- 

For two characters r and A of A over if, since rA = AT, we have 

TX = aA = ar = AT, 

where a = f(A) = A(T). If T ^ A, then a = 0 and TA = 0. If r = A, then 

a=^T(2/)T(y-1) = ^l = Ar 
y€A yeA 

and T2 = NT, proving the following. 

Corollary 1 For two characters T and X of A over K, 

= A, f NT,    T 

{   0, T rA — "     *\. 

In the following discussion, we abbreviate ch(^4; K) by A* and view A* as a 
subset of KA. 

Corollary 2 A* is a linearly independent subset in the K-vector space KA. 

Proof   Suppose 
0 = ]T Q(T)T,      a{r) € K. 

r£A' 

By corollary 1, for any A € A* 

X ]T a(r)T = Na(X)X = 0 
rem- 

and a(X) = 0. Since this holds for any A € A*, the corollary follows. 
By the theorem, the if-subspace spanned by a character r over K is A- 

invariant 
KAT = KT. 

By corollary 2, we have the direct sum of one-dimensional A-invariant subspaces 
oiKA, 

reA' 
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5.1    Split case 
Suppose A splits over K.  By corollary 2, A* is a basis of the if-vector space 
KA and we have the following result. 

Theorem 2 KA is the direct sum of one-dimensional A-invariant subspaces 

KA = J] ®Kr. 
T€A' 

By theorem 2, 

1 = ^2 Q(T)r>      a(T) G K- 
T6A* 

For any A £ A*, 

A = A • 1 = 53 a(r)Ar = M*(A)A 
re/1* 

and a(X) = JJ, proving the following. 

Corollary 3 

»-wE- 
T£A" 

By corollary 3, 

/ = *!> = £ E/w- 
is the expansion of / over the basis A* of Ä"A   The coefficient set of this 
expansion (up to scale multiple JJ) 

is called the Fourier transform of / in KA. By theorem 1, 

f(r) = y£f(y)r(y-1). 
y€A 

The linear isomorphism that maps the coefficient set of the expansion of / over 
the basis A 

f{x),      x£A, 

onto the coefficient set of the expansion of / over the basis A* (up to scale 
multiple jj) 

/(T),    T e A* 
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is called the Fourier transform over KA. The inversion that maps coefficient 
sets over A* onto coefficient sets over A 

fW = 7? E f(-r)T(x),     xeA, 
T€A' 

is called the inverse Fourier transform over KA. 

Example 18 Examples 

The basis A* of KA is a diagonalizing basis for the operators L(g), g G KA, 
since 

L(g)r = gr = g{r)r,     r € A* 

and a diagonalizing basis for multiplication in KA. 

Theorem 3 For f and g in KA, 

T<=A' 

Proof 

\T£A' /    \\€A' / 

T€A'XeA' 

J7 E nr)9(r)r, 
TEA 

completing the proof. 

Corollary 4 If f £ KA satisfies f2 = 0, then / = 0. 

Proof   By theorem 3 

reA' 

implying, since A* is a basis of KA, that 

/>) = 0,      re A*, 

and / = 0 proving the corollary. 
The theorem leads to an algorithm for computing fg, f,g€ KA. 
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• Compute the Fourier transform 

f(T), T€A*. 

• Compute the Fourier transform 

g{r),     T£A*. 

• Compute the product in K 

f(r)g(T),      T€A*. 

• Compute the inverse Fourier transform of these products 

fg- 

The importance of this algorithm to compute fg, f, g G KA, based on the 
existence of fast algorithms to compute the Fourier transform. 

An A-invariant subspace W of KA is called irreducible if the only A-invariant 
subspaces of W are (0) and W. For r G A*, Kr is an irreducible A-invariant 
subspace of KA. In the split case the A-invariant and irreducible A-invariant 
subspaces of KA can be completely described in terms of the subspaces KT, 

T€A*. 

Theorem 4 If W is an A-invariant subspace of KA, then 

W=J2 ®KT
 = KAe> 

  T€A 

where A = W fl A* and e = jj ]Cr€A T- 

Proof   For / G W and A G A* 

xf = jj £ /(r)AT = TJf{x)x- 
T€A' 

Since W is A-invariant, 
/(A)A e W,      A6A*. 

If /(A) ^ 0, then A G W proving that every / G W is contained in the if-linear 
span of the set of characters contained in W, proving W = ST€A ©AT. 

Since e G W and W is A-invariant, KAe C W. For any A 6 A, Ae = ^A € 
ifyle, proving W C Ä"Ae, completing the proof of the theorem. 

The factor jj in the definition of e has been chosen so that e2 = e, the 
relevance of which will be made clear in the next section. 

If W is an irreducible A-invariant subspace of KA, then by theorem 4, W 
contains a unique r G A* and W = AT, proving the following corollary. 
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Corollary 5  The irreducible A-invariant subspaces of KA are given by KT, 

T<=A*. 

Denote the complement of A = W D A* in A* by Ac. By theorem 2 and 
theorem 4, we have the following result. 

Corollary 6 KA is the direct sum of A-invariant subspaces, 

KA = W®W, 

where 

W' = Y^ ®KT = KAe'> 
TSAC 

and e' = jf £T€Ac T- 

The A-invariant subspace W of KA in theorem 4 can also be described by 

W = {f€KA:f(T) = 0, for all T€ Ac}. (1) 

In general, if A is an arbitrary subset of A* and Ac its complement in A*, the 
subspace of KA define in (1) is A-invariant. This follows from the diagonalizing 
formula for the Fourier transform and the nonvanishing of characters. 

By the results just described, single characters determine irreducible A- 
invariant subspaces, collections of characters determine A-invariant subspaces 
and partitions of the collection of all characters determine direct sum decompo- 
sitions of KA into A-invariant subspaces. 

5.2    Nonsplit case 

If A does not split over K, then KA does not decompose into the direct sum of 
one-dimensional A-invariant subspaces, but does have decompositions into the 
direct sum of irreducible A-invariant subspaces. For K = Q or K = GF(pR), 
p a prime not dividing N, we have constructed a minimal field extension of K 
over which CN splits or equivalently, having a primitive iV-th root of unity. If N 
is the least common multiple of the orders of the elements in A, then the same 
construction produces a minimal field extension E of K over which A splits. 
We call E the splitting field of A over K. 

We will show how splitting fields of A over K can be used to construct 
decompositions of KA into direct sums of irreducible A-invariant subspaces. 
The irreducible A-invariant spaces will not generally be one-dimensional. The 
first new concept required is that of idempotents which replace characters as 
the structural basis of these decompositions. 

Suppose A is a finite abelian group of order iV and if is a field over which A 
does not necessarily split. We assume throughout that K = Q or K = GF{pR) 
where p does not divide N. 
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A nonzero element e € KA is called an idempotent if e2 = e. Two idempo- 
tents ei and e2 are said to be orthogonal if eie2 = e2ßi = 0. A set of pairwise 
orthogonal idempotents 

{ei,...,ej} 

is called a complete set of orthogonal idempotents if 

The sum of orthogonal idempotents ei and e2 is an idempotent since 

(ei + e2)
2 = e? + eie2 + e2ei + e| = ei + e2, 

and if e is an idempotent, the set 

{e,l-e} 

is a complete set of orthogonal idempotents. 

Example 19 If r is a character of A over K, then by corollary 1, 

_ J_ 

is an idempotent of KA.   If T\ and T2 are characters of A over K, then the 
corresponding idempotents e\ = jjTi and e2 = ^2 are orthogonal. 

Example 20 Suppose A splits over K. Denote the set of all characters of A 
over KJsy A*. By corollary 3, the set of idempotents 

{e = -T-.T€ A*} 

is a complete set of orthogonal idempotents of KA. 

A complete set of orthogonal idempotents can be used to decompose KA into 
a direct sum of ^-invariant subspaces in much the same way as, in the split case, 
the set of characters produce such a decomposition. However, the .A-invariant 
subspaces generated by the idempotents will not generally be one-dimensional 
or even be irreducible. 

Theorem 5 // 
& :l<j<J} 

is a complete set of orthogonal idempotents, then KA is the direct sum of A- 
invariant subspaces 

j 

KA = ^2®KAej. 
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Proof   Define 
Wj = KAej,      l<j<J. 

Wj is the A-invariant subspace of KA generated by tj.   Consider the sum 

Y,j=i wv Bv orthogonality, if 

j 

then 
0 = ek ■ 0 = /fee*,      1 < k < J, 

and the sum is a direct sum Y^j+i®Wj-   The completeness condition, 1 = 

X)j=i eo > implies that for every / € KA, 

j J 

proving the theorem. 

The A-invariant subspaces KAej, 1 < j < J, in theorem 5 are not necessarily 
irreducible. In order to derive conditions on and eventually construct sets of 
orthogonal idempotents producing decompositions into irreducible A-invariant 
subspaces, we will use the splitting field E of A over K and the Galois group of 
the corresponding extension of E over K. 

Suppose that E is the splitting field for A over K. A mapping a : E —> E 
is called-an automorphism of E over K is a is an automorphism of the field 
E fixing the elements in K. The collection of all automorphisms of E over K 
forms a group under composition called the Galois group of E over K. 

Denote by V the Galois group of E over K. The order of V equals the 
dimension of E as a JiT-vector space. 

The main result we require from Galois theory is the following. 

Theorem 6 If a £ E satisfies, for all a G F, 

o~(a) = a, 

then a 6 K. 

Suppose that (j>{N) is the order of the group of units U(N) of Z/N. 

Example 21 The cyclotomic field Q(£n), £n = e2iri^, is the minimal extension 
of Q over which CN splits. Q(£AT) has dimension <p{N) as a vector space over 
Q. The Galois group of the extension is isomorphic to U(N) having elements 
uniquely defined by 

<T(M=&,      neU(N). 
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Example 22 For a prime p not dividing N and R the smallest positive integer 
satisfying pR = 1 mod N, GF(pR) is the splitting field of CN over GF(p). 
GF(pR) has dimension R as a vector space over GF{p). The Galois group of 
the extension is isomorphic to the cyclic group CR and is generated by the 
automorphism defined by 

a{a) = ap,      a G GF(pR). 

T acts on EA and on A* = ch(A, E). For f £ EA and a G T, define f G .EM 
by 

/* = £>(/(*))*. 

If oi, cr2 € T, then f1<72 = (fa*)°K As a corollary to theorem 6, we have the 
following. 

Corollary 7 For f G EM, /a = /, /or a// cr G T, if and only if f G tfA 

For r G A*, T" G -A*, for all a G T. Define 

Tr = {T* : <r G T} 

and call Tr the V-orbit at r. If r' G Tr, then Tr = IV and if TTI (~l TT2 is not 
empty for TI, r2 G A*, then TTI = TT2. The action of T on J4* partitions A* 
into the disjoint union of T-orbits. 

A subset A of A* is called T-invariant if r G A implies r" G A, for all a G T. 
A T-invariant subset A of A* is the disjoint union of the T-orbits contained A. 

We wHl see that the T-invariant subsets of A* determine the ^4-invariant sub- 
spaces of KA and that the T-orbits in A* determine the irreducible A-invariant 
subspaces of KA. Moreover, we will show the relationship between decomposi- 
tions of T-invariant subsets of A* into disjoint unions of T-invariant subsets and 
decompositions of A-invariant subspaces of KA into direct sums of ^-invariant 
subspaces. 

For T G A*, define er G EA by 

°T = jj £ T'- N T'ePr 

If A G TT, then e\ = eT and eT depends solely on the T-orbit at r. 

Theorem 7 For r G A*, er is an idempotent in KA. 

Proof   By corollary 1, e£ = eT. Since r' G TT if and only if {T'Y G TT for all 
a G T, we have 

' e? = eT,      a G T, 

which by corollary 7 implies eT G A".A completing the proof. 
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Theorem 7 provides a method for constructing idempotents in KA from T- 
orbits of characters in A*. Moreover, if T\, T<I € A* lie on distinct T-orbits, then 
by corollary 1 

and the idempotents eTl and eT2 are orthogonal.  Each T-orbit determines an 
idempotent and distinct T-orbits determine distinct orthogonal idempotents. 

Denote by A*/T any complete set of representatives of T-orbits in A*. A*/T 
is a set formed by choosing a single character in each T-orbit. If A is a T- 
invariant subset of A*, denote by A/T the subset of A*/T formed by the char- 
acters contained in A. 

Theorem 8 The set 
{eT:reA*/T}   , 

is a complete set of orthogonal idempotents in KA. 

Proof   The proof follows from corollary 3 and 

T€A'/T T£A' 

We will see eventually that the set of idempotents in theorem 8 is special in 
the sense that the A-invariant subspace generated by eT, KAeT, is an irreducible 
yl-invariant subspace in KA. 

For any T-invariant subset A of A*,'define 

^£T- ;v 
T6A 

Since A is T-invariant, it is the disjoint union of T-orbits and we can write e^ 
as a sum of orthogonal idempotents 

r€A/r 

proving the following result. 

Theorem 9 For any T-invariant subset A of A*, 

T6A 

is an idempotent in KA and 

KAe& =   ^2  @KAeT. 
r€A/r 
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r-invariant subsets of A define idempotents in KA and as we will see below 
every idempotent in KA comes from a T-invariant subset by the formula in 
theorem 9. 

Corollary 8 If A\ and A2 are nonintersecting T-invariant subsets of A*, then 
eAj and e&2 are orthogonal idempotents in KA. 

Corollary 9 If A is a Y-invariant subset and Ac is its complement in A*, then 
Ac is Y-invariant and 

{eA,eA<=} 

is a complete system of orthogonal idempotents in KA. 

More generally if A* is the disjoint union of T-invariant subsets A* = 
Uf=1Aß, then the set 

{eAr :l<r<R} 

is a complete set of orthogonal idempotents of KA. By theorem 5, KA is the 
direct sum decomposition of the ^4-invariant subspaces 

R 
KA = ^®KAe±r. 

r=l 

Corollary 10 For Y-invariant subsets Ai and A2 of A*, Ai C A2 if and only 
if KAeAl C KAeA2 ■ 

Proof    If Ai C A2, then KAe^  C KAe&2 by theorem 9.   Conversely, if 
KAeAr-Q KAe&2, we can write 

eAi=/eA2,      f&KA. 

For any TGA], 

T = TeAl = freA2 

which since r ^ 0 implies r € A2 completing the proof. 

Theorem 10 If e is an idempotent in KA, there exists a unique Y-invariant 
subset A of A* such that e = e&. 

Proof   Since e e EA, we can write 

1 
N 

e = M £ *(r)r- 
T£A- 

The idempotent condition e2 = e implies 

e(r)2=e(r),      r e A\ 
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and e(r) is either 0 or 1. Denote by A the set of all r G A* such that e(r) = 1. 
Since e" — e, for all a € T, A is T-invariant and e = e&, proving the theorem. 

Suppose W is an A-invariant subspace of KA and WE is the £-subspace 
spanned by W in EA. WE is an A-invariant subspace of EA. If 

{wr : 1 < r < R} 

is a basis of the ÜT-vector space W, it is also a basis of the jB-vector space WE 

and W = WE r\KA. 

Theorem 11 WE is Y-invariant. If f £ WE, then f e WE, for all a € T. 

Proof   If / € WE, then 

/ = 52 a(r)w'-'   a(r)e ^» 
r=l 

and for all a € T, 

proving the theorem. 

/ff = ^a(r)ffu;reiy£, 
r=l 

Set A = WE!~\A* and denote the complement of A in A* by Ac. Theorem 11 
implies A and Ac are T-invariant. By theorem 4 especially the decomposition 
of WE given in ( 1), we have 

W = {f£KA:f(T) = 0, forallreA0}. (2) 

In general if A is an arbitrary r-invariant subset of A* and A° its complement 
in A*, the subspace of KA denned by ( 2) is ^-invariant. 

Theorem 12 For r € A*, r € WE if and only if eT eW. 

Proof   Suppose r € A*. If r 6 WE, since WE is T-invariant 

TT C WE 

and by theorem 7 eT € Wjs ("I Ä"A = W.   Conversely, if eT € W, then by 
corollary 1 and the A-invariance of WE 

1 

reT = —T£WE 

proving the theorem. 

Theorem 12 is the main result we need for describing A-invariant subspaces 
of KA in terms of idempotents of KA. 
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Corollary 11 

where A = WE nA*. 

W = KAeA=   J2  ®KAeT, 
r€A/r 

Proof   By theorem 12, eT e W, for all r € A, implying eA € VF. Since W is 
A-invariant, KAeA C W. Corollary 9 implies 1 = eA + eAc By ( 2), for any 
few, 

f = f-l = feA + feAc = /eA, 

completing the proof. 

By corollary 11, every A-invariant subspace W of KA is generated by an 
idempotent e^, where A is the T-invariant subset WE fl A*. By corollary 10, 
we have the following result. 

Corollary 12 An A-invariant subspace W of KA is irreducible if and only if 
W = KAeT, for some T € A*. 

The preceding discussion reduces the study of A-invariant subspaces of KA 
to the study of T-invariant subsets on A*. The irreducible A-invariant subspaces 
of KA correspond to T-invariant subsets consisting of a single T-orbit. A- 
invariant subspaces of KA which are the direct sums of, say fc, irreducible 
A-invariant subspaces correspond to T-invariant subsets consisting of exactly k 
distincl_T-orbits. The following theorem summarizes these remarks. 

Theorem 13 KA is the direct sum of irreducible A-invariant subspaces 

KA=   J2   ®KAT. 
T€A'/r 

The number of irreducible A-invariant subspaces in KA is equal to the number 
of T-orbits in A*. 

Every A-invariant subspace W of KA is the direct sum of irreducible A- 
invariant subspaces 

W=   Y,   ®KAT, 
TgA/r 

where the number of irreducible A-invariant subspaces in W is equal to the 
number of V-orbits in WE- 
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Suppose G is an arbitrary finite group of order N and K is a field. Usually 
in examples and applications, K = Q, R, C or a finite field GF(pR), p a prime 
not dividing N, but results hold generally for fields whose characteristic does 
not divide N. 

The group algebra KG of G over K is the K-vector space of all formal sums 

/ = £/(*)*,    f(t)eK, 
t€G 

under 
/ + S = £(/(*)+s(*))*,     f,9£KG, 

teG 

«/ = £>/(*))*,      f£KG,a€K, 
teG 

with ÜT-algebra multiplication 

fs = E (E /(«M«"1*)) *'    /- 5 e ffG. 
t€G \«ec? / 

The additions and multiplications inside the brackets are taken in K. 
Generally since G is not necessarily abelian, fg is not necessarily equal to 

5/i /> 9 € KG. Replacing u by tu-1 in the inner summation, 

/ff = £(Es(u)/(*«_1)U    f,geKG. 
  teG \u€G I 

Denote by L(G; K) the .fif-vector space of all jRT-valued functions on G. Every 
/ e L(G; K) defines a formal sum in KG 

/ = £/(*)* 
teG 

and we can identify the K- vector space KG with the if-vector space L(G; K). 
The multiplication fg in KG corresponds to the possibly noncommutative con- 
volution in L(G; K) 

f * 9(t) = E /(«M«"1') = E 9(u)Htu-1),      f,g€ L(G; K). 
u€G u€G 

Under this identification the delta function 6U, u £ G, corresponds to a formal 
sum having a single nonzero coefficient which we denote by u, 

teG 
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In this way we can view G as a subset of KG and a basis of the K-vector space 
KG. 

For u G G and / G KG, 

uf = Y/f(t)ut = Y/f(u-1t)t. 
t£G t€G 

We call uf the left translation of / by u. Right translation can also be defined 
and generally differs from left translation, unless G is abelian. For u G G, the 
operator L(u) of KG denned by 

L{u)f = uf,      / G 1TG, 

is a linear isomorphism of the K-vector space KG and we have 

L(uv) = L(u)L(v),      u, v G G, 

Liu'1) = L(u)-\      u G G, 

where L(u)L(v) and L(u)-1 denote composition and inversion of operators on 
KG. 

Denote by GL(KG, K) the group of linear isomorphisms of the K-vecior 
space KG. The mapping 

L:G-+GL{KG,K) 

is an isomorphism of the group G into the group GL(KG, K) called the left- 
regular representation. 

A subspace V of the K-vector space KG is called G-invariant if for all u G G, 

uV = {uf:feV}cV. 

A G-invariant subspace V of KG is called irreducible if the only G-invariant 
subspaces of V are (0) and V. One of the main goals of nonabelian group har- 
monic analysis is to characterize the G-invariant, irreducible G-invariant and 
direct sum decompositions of KG into irreducible G-invariant subspaces. For 
an abelian group, its character theory provided all the necessary tools for an- 
swering these questions. Generally these problems require a vast mathematical 
machinery for their solution. However for the nonabelian groups considered in 
this text, explicit solutions for many of these questions will be derived in terms 
of abelian group character theory. 

For g G KG, the operator L(g) of KG denned by 

L(g)f = gf,     feKG, 

is a linear homomorphism of the if-vector space KG. Since 

L(g) = J29(t)L(t),     gGKG, 
t€G 
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G-invariant subspace V of KG are If G-invariant subspaces. If V is a G-invariant 
subspace of KG and / G V, then for all g G KG, 

gV C V. 

Idempotent theory provides a convenient language in which to express many 
of the results in the following chapters. However explicit results can usually be 
written in terms of abelian group character concepts. 

A nonzero element e G KG is called an idempotent if e2 = e. Two idempo- 
tents ej and e-i in KG are called orthogonal if e\e^ — £iZ\ = 0. A set of pairwise 
orthogonal idempotents 

{er^<3<J} 

is said to be complete if 

Example 23 If e is an idempotent in KG, then {e, 1 - e} is a complete set of 
orthogonal idempotents. 

Example 24 If e is an idempotent, then the G-invariant subspace generated 
by e, KGe, has e as a right unit 

KGe = {a e KG : ae = a}. 

Simply write a e KGe as a = a'e, a' G ifG and use 

ae = a'e2 = a'e = a. 

Conversely if a G Ä"G can be written as a = ae, then ae G Ä"Ge implies 
a G -K"Ge. 

Example 25 If e is an idempotent then KG = Ä"Ge © _K"G(1 - e).   Since 
1 = e + (1 - e), for any a G KG 

a = a ■ 1 = ae + a(l - e) G JfGe + Ä"G(1 - e) 

and JFiTG = KGe + KG(1 — e). The sum is a direct sum since if a G KGe D 
i<TG(l - e) and we write a = a'e = a"(l - e), then 

a = a'e = a"(l - e)e = a"(e - e2) = 0. 

The result described in example 25 holds generally for any complete set of 
orthogonal idempotents. 
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Theorem 14 If 
{ej :l<j<J} 

is a complete set of orthogonal idempotents, then 

j 

KG = Y1 ®KGe 

Proof   Since 1 = J2j=i ej> f°r any a e KG, 

J J 
a = YlaeJeYlKGei 

and KG = J2l=iKGei- If 

j 

then for any 1 < A; < J, by orthogonality 

j 

0 = 0 • ek = ]T ctj{ejek) = akek 

proving the sum is a direct sum. The same argument shows the following corol- 

lary.      

Corollary 13 // an idempotent e can be written as the sum of two orthogonal 
idempotents, e = e\ + e2, then 

KGe = KGel®KGe2. 

Example 26 If KG = W\ ® W2, where W\ and W2 are G-invariant subspaces 
and 

1 = ei + e2,      ei € W\, e2 € W2, 

then {ei,e2} is a complete set of orthogonal idempotents. Since 

ei =ei • 1 = e? + e1e2 

with ei, e\ £ W\ and eie2 € W2, by uniqueness of representation e\ = ef and 
eie2 = 0. Now 

ei = 1 • ei = e\ + e2ei = ci + e2ei 

implies e2ei = 0 verifying the example. 

32 



Generally we have the following result. 

Theorem 15 If KG is the direct sum of G-invariant subspaces 

J 

KG = ^2®Wj 
3=1 

and 
j 

1 = ]CeJ>      ej£Wj,l<j<J, 
i=i 

then 
{ej :l<j<J} 

is a complete set of orthogonal idempotents. 

Proof   Completeness is by definition. For any 1 < k < J, 

j 

ek = ek-1 = y^ ekej 

where ektj e Wj, 1 < j < J, which by uniqueness of representation implies 

efc = ek, ekej = 0, j ^ k 

competing the proof. 

Example 27 If KGe = Wi © W2, the direct sum of G-invariant subspaces W\ 
and W2 with e an idempotent and e = ex 4- e2, £\ € W\, e2 € W2, then e! and 
e2 are orthogonal idempotents. By example 24 

ei = e\e = ef + eie2 

which by uniqueness of representation implies 

ei = e\, eie2 = 0. 

The same argument shows that 

e\ = e2,      e2e: = 0. 

Generally we have the following which we state without proof. 
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Theorem 16 If KGe is the direct sum. of G-invariant subspaces 

j 

with e an idempotent and 

j 

e = ^2 e j,      ej £.Wj, 1 < j < J, 
j=i 

then 
{ej :l<j<J} 

is a set of pairwise orthogonal idempotents. 

A homomorphism P of the if-vector space KG is called a projection if P2 = 
P. If 

imP = {P(a):a£KG} 

ker P = {a € KG : P(o) = 0}, 

then im P and ker P are subspaces of KG satisfying 

im P = {a € KG : Pa = a} 

KG = imP©ker P. 

Every subspace W of KG determines a projection P such that W = im P. Such 
a projection exists since if KG = W © W, for some subspace W of KG, then 
we can define P by 

P(w + w')=w,      we W, w' € W. 

We will now show that every G-invariant subspace W of KG is generated 
by an idempotent. Consider any projection P of KG satisfying W = im P and 
define the mapping PQ : KG —+ KG by 

Fo(") = TF E u"1^™*).      a e #G. 

Po is a homomorphism of the Ä"-vector space KG.  Since P(ua) £ W, u £ G 
and a € if G, and W is G-invariant 

P0{a)€W,      a£KG. 
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Theorem 17 For all a € KG 

P0(a) = aPo(l), 

and if a £ W, then 
Po{a) = a. 

Proof   For t e G, 

t-^oW = ^ £ r1«-^^) = ^ £ «-^(u) = Po(i), 
ugG u£G 

by a change of variables. The linearity of PQ proves the first part. If Q G W, 
then ua GW, U G G and P(ua) = ua implying 

Po{ua) = — 2_, u lua = a> 
«eG 

completing the proof. 

Since im Po C W and PQ acts by the identity mapping on W, by theorem 17 
we have the following. 

Corollary 14 PQ is a projection of KG satisfying W = imp). 

Set"e^=P0(l). 

Corollary 15 e is a generating idempotent for W, 

W = KGe,      e2 = e. 

Proof   By theorem 17 and corollary 14, for all w € W, 

w = PQ{W) = we. 

Since e € W, e is an idempotent in W and a right unit for W.  Example 24 
implies W = KGe, completing the proof. 

Since every G-invariant subspace W has a generating idempotent, by corol- 
lary 15, there exists a G-invariant subspace W such that KG = W® W. More 
generally we have the following result. 

35 



Corollary 16 // W\ and W2 are G-invariant subspaces of KG such that Wi C 
W2 then there exists a G-invariant subspace W{ ofW2 such that W2 = W\®W[. 

1 

Proof   If W is a G-invariant subspace of KG such that KG = Wi@W, then 
W2 = W\ © (W n W2) where W{ = W n W2 is a G-invariant subspace of W2. 

An idempotent e € KG is called primitive if e can not be written as the sum 
of orthogonal idempotents in KG. 

Theorem 18 e is a primitive idempotent in KG if and only if KGe is irre- 
ducible. 

Proof If e is not primitive and e = e\ 4- e2, where e\ and e2 are orthogonal 
idempotents, then KG = KGe\®KGe2 and KGe is not irreducible. Conversely 
if W is a G-invariant subspace of KGe, then by corollary 16, KG = W® W, for 
some G-invariant subspace W of KGe. Example 27 implies e is not a primitive 
idempotent, completing the proof 

The problem of constructing G-invariant, irreducible G-invariant and di- 
rect sum decompositions of KG into irreducible G-invariant subspaces can be 
replaced by that of constructing idempotents, primitive idempotents and com- 
plete sets of primitive orthogonal idempotents. 

Decompositions of KG into direct sums of G-invariant subspaces 

j 

KG = J2 ©Wj 
— i=i 

lead to block diagonal matrix representations of the left translation operators 
L(a), a £ KG, and to fast algorithms for computing products in KG. Details 
for special groups G will be given in the following chapters. However, in this 
chapter we will describe the general outline of the method. 

For t € G, the matrix S(t) of L(t) relative to the basis G, of KG, ordered 
in some way, is a permutation matrix reflecting the group structure of G. The 
matrix S(a) of L(a), a € KG, relative to G is a linear combination over K of the 
permutation matrices S(t), t G G. If G is a cyclic group, then the corresponding 
matrices S(t), t € G, are cyclic shift matrices and the corresponding matrices 
S(a), a € KG, are circulant matrices. In this case the direct sum decomposition 
of KG given by the characters diagonalizes the circulant matrices with the 
Fourier transform describing the change of basis. 

Generally since Wj is G-invariant, L(a), a € KG, maps Wj into itself. 
Denoting by Tj(a) the matrix of the restriction of L(a) to some basis of Wj, 
the matrix direct sum 

j 

T(a) =$>», 
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is the matrix representation of L(a) relative to the basis of KG formed by 
piecing together the bases from the Wj, 1 < j < J.  We say the new basis is 
compatible with the direct sum decomposition of KG. 

To compute 
aß = L(a)ß,      a, ß € KG, 

we write ß in terms of the compatible basis, compute T(a) and form the matrix 
product of T(Q) with the coordinates of ß in the compatible basis and then 
translate the result back to the basis G. 
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6    Group algebras of A<$ B 

A subgroup A of a group G is called normal if for all t € G, 

tAt~l = {tat-1 : a € A} C A 

G is said to be the semidirect product of a normal group A and a subgroup B if 
every £ G G can be written uniquely as 

t = xy,     x £ A, y £ B. 

In this case we write G = A<$B and we call x the A-component and y the 
B-component of t. If i = rcy and t' = x'y1 with x, x' £ A, y, y' E B then 

«' = x(yx'y~1)yy' 

where x{yx'y~l) is the ^-component and yy' is the B component of tt'. 
In this chapter we will study groups of the form G = A<§ B where A and B 

are abelian groups. 
For a £ KA and ß £ ÜTB, we can view et, ß € KG. If aß = 0, then 

]T £ a(x)ß(y)xy = 0 

which implies 
a(x)ß{y) = 0,      x e A, y € B, 

and a = 0 or ß = 0. 

6.1    Split case 

Suppose G = A <$ B where A and B are abelian groups splitting over K. Denote 
the character groups of A and B over K by .A* and B*. If T £ A* and A € B*, 
then as elements in KG 

r = Y^ T{X)X,      T[X) £ K, 
x€A 

and 
A = £ A(»)y,      A(y) € #. 

B acts on A*. For r £ A* and y £ B define T" € KG by 

Ty = yn/ 1. 

Since A is a normal subgroup of G 

T
y = Y2 i~(x)yxy J = ]P T(J/ 

1xy)x 
x£A x&A 
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is also in A*. For y, y' € B 
tTy\y' = Tv'y 

and as a special case 

For re A* 
BT = {Ty:y<= B} 

is a subset of A* called the B-orbit over r. 
If T and T' are in A* and T' € UT with T' = Ty, y E B, then 

T = (r")2'-1 = r'"-1 € BT' 

and BT = BT'. 

For T and r' in A*, if BT D BT' ^ <£, with T" = T'*', y, y' e B, then 

r = (r")"_1 = ((r')3'')1'"1 - r"rV 

and r € BT' implying BT = BT'.   Consequently A* is partitioned into the 
disjoint union of distinct B-orbits. A set 

{TU...,TK}CA* 

is called a complete set of representatives for the collection A*/B of distinct 
B-orbits in A* if A* is the disjoint union 

K 

A* = Y,BTk. 

Since 

T€A- A£B' 

where L and M are the orders of A and B 

T€A'XeB' 

where N = LM is the order of G. However generally T and A do not commute. 
We do have the following. 

Theorem 19 Fort = xyeG,x£A, y€B, 

r€A*A€B* 
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Proof   Since XT
V
 = TV

(X~
1
)T

V
 and yX = X(y~1)X, 

trX = xyrX = xrvyX = r5/(x-1)A(y_1)rvA 

completing the proof. 

Since G is a basis of the Üf-vector space KG, by theorem 19, the collection 
of products in KG 

{TX:T£ A*, XGB*} 

is also a basis of KG. Generally KGTX is not one-dimensional, so that the 
spaces 

{KGTX :TGA*, A G B*} 

intersect. If G is abelian, then the products TX, T G A*, X G B*, are the 
characters of G over K and the results of chapter 4 apply. 

Generally to form direct sum decompositions of KG into left G-invariant 
subspaces we must modify the above approach. For r G A*, define 

B(T) = {y€B:Ty=r}. 

B(r) is a subgroup of B called the centralizer of r in B. 
Suppose Ti, T2 € A* with r2 =rf, j/i € ß. If y G Bfa), then since B is 

abelian 
rl = (T?1)* = (T3')"1 = Tyi = T2 

and y € B(T2) proving the following result. 

Theorem 20 If T2 £ BTX, TX, T2 € A*, then 

B(n) = S(r2). 

We can assign a centralizer in B to every .B-orbit in ^4*.  The assumption 
that B is abelian is essential. 

Suppose T e A* and consider B(T). For y € B, the set 

yB{r) = {yz:z£ B(T)} C B 

is called the left coset of B(T) in ß determined by y. If j/' G B(T), then 
y'B(r) = yB(r). The usually arguments show that two left cosets are either 
equal or else have empty intersection. The collection B/B(T) of left cosets of 
B(r) in B forms a partition of B. A set 

{ys ■■ l < s < 5} c B 

is called a complete system of representatives of B/B(T) if B is the disjoint 
union 

B = J2yaB(r). 
3=1 
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Since B is an abelian group, a group structure can be placed on B/B{T) by 

yB(T)y'B{T) = yy'B{T) 

(yB{T))-ly-lB{T),   y, y' € B. 

For y € ysB(r), with y = ysz, l<s<S,ze B(T), 

Ty = (Tz)v'=Ty',   l<s<S. 

Moreover if TVa = TVt, 1 < s, t < S, then 

and ysB(r) = ytB{r). Consequently the B-orbit BT has order S and 

BT = {ry' :l<s<S}. 

Generally the ys, 1 < s < S depend on r and when we need to express the 
dependence we write j/J, 1 < s < ST- If MT denotes the order of £?(r),then 
M = Mr ST, where M is the order of B. 

We will now show that the collection of products 

i._LTA,     T£A;X€B{T); 

forms a complete set of primitive orthogonal idempotents for KG. We break up 
the proof into the following three theorems. 

Theorem 21 For r1; r2 € A* and Xt € B(TI)*, A2 € B{T2)*, 

(rjAi)2 =LMTlT1X1 

and 
(
T

IAI)(T2A2) = 0, unless T\ = r2 and Aj = A2. 

Proof   Since r" = T\, y € B{T{), 

TIAI =  ^2 x1(y)ny=  ^2 ^i(y)yTi = ^iTi- 
y€B(n) yes(ri) 

Consequently 
(TlAi)2 = X\rfXi = LTXX\ = LMTITIXI 

and 
(riAi)(r2A2) = AI(TIT2)A2 = 0, unless n = r2, 
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in which case 
(TI><I)(TI\2) = T1A1A2 = 0, unless Ai = A2, 

completing the proof. 

By theorem 21, the collection of products is a set of orthogonal idempotents in 
KG. 

Theorem 22 

1= V     V \- E E TW^ 
TGA" A£B(T)- 

Proof   The theorem follows from 

= L '4E' 
TGA' 

and 

»-£ E/.   «*. 
Theorem 22 implies completeness. 

For T e A* and A € B(r)*, by theorem 21 

6 = lkTX 

is an idempotent. Since -^r is an idempotent and TX = AT 

1 1 
Li LI 

Theorem 23 //re A* and A e #(T)*, then e = T^-TA is a primitive idem- 
potent. 

Proof   Assume e is not primitive and e = e\ +e2 where ei and e2 are orthogonal 
idempotents. Since 

1 1 

and 

we have 

e\ = eie = —e\er = —e\T 
Li LI 

e\ = eei = —Tee\ = —re\ 
Li Li 

2 1       2 1 
el = el = ^2TelT = ^relT- 
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Since A* is a basis of KA, we can write 

«i = 7E     £ e^r'^y ) y,      ei(r',y) € K. 

Consequently 

ei = jpTeiT =j^Y^J2 ei(r',2/)rr'yr. 
yCBr'eA" 

However 
rr'yr = 0, unless T' = T and y G B(T), 

and 
r2yr == X2Ty,      y G B(r), 

implying 

ei = -T   ]T   ei(r,y)y = -rmi,      mi G iYjB(T). 
2/€B(T) 

The same argument shows that 

e2 = yTm.2,      m2 € KB(T), 
LI 

implying 
e = n^TA=iT(mi+m2)- 

Since f~G" KA and A, mi -f m2 G KB(T), 

1   , 
——A = mi + m2. MT 

We will show that mi and m2 are orthogonal idempotents in KB(r), contra- 
dicting the fact that jg-A is a primitive idempotent in KB{r). 

Since rmi = miT, 
2      1      2      1 

e\ = -fTrni = 7"Tmi 
Xy Xy 

implying m\ = mi. The same argument shows m\ = m2 and mim2 = m2mi = 
0, completing the proof. 

We have proved that the collection of products 

1 
LM, 

■TA : T G A*, A G B(r)* 

is a complete set of primitive orthogonal idempotents for KG and we can apply 
the results of the previous chapter. 
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Theorem 24 

KG=J2    Yl   ®
KGTX 

with the direct sum factors 

KGTX,     TGA*, A € B(TY, 

irreducible G-invariant subspaces of KG. 

In the abelian case, the irreducible G-invariant subspaces of KG are one- 
dimensional and are uniquely determined by the characters. The Fourier trans- 
form is the change of basis transform between the G-basis and the character 
basis. The importance of the Fourier transform in digital signal processing is 
greatly enhanced by fast algorithms for the Fourier transform. 

In contrast, if G is not abelian, an irreducible G-invariant subspace of KG 
is not necessarily one-dimensional. For groups of the form G = A$B, with 
A and B abelian, we will determine bases for the subspaces KGTX, T £ A*, 
A € B(T)*, and derive fast algorithms for relating components in the G-basis to 
components in the new basis. 

Suppose T £ A* and A £ B{T)*. Set ys = yj, 1 < s < S = ST in the 
following discussion. For x £ A and y € B, with y = ysz, 1 < s < S and 
Z£B(T), 

— xyr\   =    xyszrX = xry'yszX 

=   ry-ix-^Xiz-^ysTX. 

Theorem 25 For T € A* and X £ B(T)*, the set 

{ysrX : 1 < s < S} 

is a basis of the K-vector space KGTX. 

Proof   Since the set 
{xyrX :x £ A, y € B} 

spans KGTX, the set 
{VSTX : 1 < s < S} 

spans KGTX. We must show that this set is linearly independent. Suppose that 

s 
0 = ]T a{s)ysrX,      a{s) £ K, 1 < s < S. 

s=l 
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Multiplying on the left by TVt, 1 < t < S, 

s 

o = rt
yo = Y,a(s)TytTy°y*x 

s=l 

=   La(t)ytT\ 

implying a(t) = 0. Since t is arbitrary, 1 < t < S, a(t) = 0, for all 1 < t < S, 
completing the proof. 

For a e KG, 
a = 7.Y,TT    E   arX 

TZ.A-      T A£B(T)* 

and by theorem 25 

1   1 ^T 

T~M~aTX = y2arx(s)yIrX,     arX(s) G K. 
LMT 5=1 

Theorem 26 For a 6 KG, r £ A* and A € B(T)*, 

arxis) = iw E (E^W^'^W-1). 
r *6B(T)  \X€A / 

w/iere ys = j/J, 1 < s < S. 

Proof   Since 
ST 

OTA = E   E   E a(xVsz)xysZTX, 
s=l Z€B(T) xi=A 

the theorem follows from 

xys*TA = T^x-^Atz-^TA,      z € B(T), 1 < s < ST. 

We will now use theorem 26 to derive an algorithm for computing the coef- 
ficients 

otr\(s),      T€A*,\€ B(T)*, 1<S<ST, 

based on abelian group Fourier transforms. 
For y e B, define ay € KA by 

ay(x) = a(xy),      x € A, 
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and compute the Fourier transform of ay over A, 

dv(T) = ^E ay(z)T(x_1)'     r G A*- 
xeA 

M Fourier transforms over A are required at this stage. Place the results into 
a two-dimensional array over A* x B 

&{r,y) = dy{T),     r£A*,y&B. 

For each r £ A* we will compute the coefficients 

öTA(«),      1 < S < ST, A G B(r)*. 

For 1 < s < 5T, define 7J € KB{T) by 

7j(z) = TC^
8
,?/^),      ^ G B{T), ys = yT

s, 

and compute the Fourier transform of 7J over B{T) 

^X) = W E -rt^xiz-1),    XGB(T)\ MT 
Z€B(T) 

Sr Fourier transforms over B(T) are required in this stage. Implementing this 
stage as T runs over A* requires Y^TZA- ^ Fourier transforms over abelian 
groups over varying sizes. 

By theorem 26, for each T G A*, 

— aTX(s) = 7;(A),      A € B(T)*, 1 < s < ST. 

First Stage     a G 1TG 

Q„ € KA, y£B 

FT over i,y£ß. 

dt G #,4*, y G B 

a G L(i4* x B) 
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Second Stage     T € A* 

a G L{A* x B) 

7j G KB(T), 1<S<ST 

FT over B{T), 1 < s < ST. 

7J G KB(T)*, 1<S<ST 

<*rx(s) = 7J(A),      Aß(r)*, 1 < s < ST. 

The algorithm computes the coefficients        ) 

aTX(s),      T£A*,XG B(T)*, 1<S<ST 

by first~computing M Fourier transforms over A and then partitioning the re- 
maining computation into L parallel stages parameterized by T € A*. For each 
T € A*, we implement a data rearrangement step which forms 5T elements in 
KB(T) and then computes ST Fourier transforms over B(T). For A € B(T)*, 

the SV-coemcients 
<xT\{s),      l<s<ST, 

are given by evaluation of the ST Fourier transforms at A. 
Assuming that the Fourier transform over an abelian group of size P requires 

PlogP complex add-multiplies, the first stage requires NlogL complex add- 
multiplies to implement M Fourier transforms over A. For each r € A*, the 
second stage requires MlogMT complex add-multiplies, since M = STMT, to 
implement ST Fourier transforms over B(T). TO implement the second stage 
over all r G A* requires M 5ZTeA* ^°S ^T complex add-multiplies. The complete 
algorithm requires 

ATlogL + M ]T logMT 

complex add-multiplies. 
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Up to scale multiple, the abelian Fourier transform can be realized by a 
unitary matrix which relates the coefficients over G with the coefficients over 
the character basis. Since the relationship between the coefficients over G with 
the coefficients over the basis 

{yJrX :T£A*, A € B{T)\ 1 < s < ST} 

is based on abelian group Fourier transforms we can represent the mapping 
between these coefficients by a unitary matrix, up to scale multiple, as well. 

The algorithm can be displayed by the following four pictures. 
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Fourier transform over A 

B 

a,. ay(x) = a(xy), x e A, y e B. 

B 

a„ 

B 

a ä{r,y)=ay(T),T£A*. 
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Data readdressing 

a%{z) = a(ry', ysz),      z € B(T), 1 < s < ST. 

VsB{r) Yr 

V2B(T) 

7r 

VIB{T) 1\ 

-TVi T = T r«2 
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Fourier transform over B(T). 

-k  B(T)  ^  B*(T) 

2 2 
-d. B(T)  2L B*{T) 

B{T)  2l  B*{T) 

Data readdressing 

  B*{T) 

  B*(T) 

B*(T) 

aTX(s) = ^(A), 1 < s < ST, r £ A*, A G B(T) 
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From the first data rearrangement stage we can see how non-commutativity 
affects the classical abelian group two-dimensional Fourier transform A x B. 
If B(T) = B, then ST = 1 and the next stage Fourier transform is over all 
of B. For B(T) = (0), S = M, the order of B, and the data passes through 
unchanged. No Fourier transform is required. If B(T) is a proper subgroup of B, 
the Fourier transform of the decimated data over B[T) produces a periodization 
of the Fourier transform over B. Generally the coefficients aT\(s) represent 
periodizations and phase modulated periodizations of the Fourier transform 
over B of the Fourier transform of the initial data with respect to A. 
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7    Examples 

7.1    The Dihedral Group DN = CN<$ C2 

Denote the elements of CN by an,Q <n < N — 1, and characters of CN by ak, 
0 < fc < AT- 1, 

N-l , 

ak = ^, exp{2m—)an. 
n=0 

Let £>jv = CN^CZ, the dihedral group of order 27V. 

DN = (a, t; aN = t2 = 1, tat = a-1). 

7.1.1    Group convolution 

For /, g G CDN, 

f =  ]T /(a;)a;,   5 =  ]T j(i)a;,      /(x), 5(1) € C, 

the C-algebra multiplication is defined by 

/*= E ( E '/(«)5(*~1»)) 2/- 

7.1.2    Complete system of orthogonal idempotents 

Complete system of orthogonal idempotents of C2 are 

(l + t)/2,(l-*)/2. 

•2 UN 

n 1    \ _ / Ca,     * = 0 
°2^ _ \ {1},    otherwise. 

A complete set of primitive idempotents of CDjv are 

^{a0(l +1)/2, a0(l - t)/2, an,l<n<N-l}. 

2^c*o(l+£) and jftOto(l — t) are of dimension 1, while jj(xn, 1 < n < N — l 
are of dimension 2. 

• N = 2M 
•M n Cv ^ / C2,     A = 0, or A 02(ak) - I {1})   otherwise 
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Thus complete set of primitive idempotents of CD^M are 

i{a0(l + f)/2, ao(l-t)/2, aM(l + t)/2, 

aw(l - <)/2,an, 1 < n < 2M - 1, n ^ M}. 

^ao(l ± t) and j^a^fl ± t) are of dimension 1, while ^an, 1 < n < 
N — 1, n ^ M, are of dimension 2. 

7.1.3    Basis of orthogonal idempotents 

• 2 UN 

-{-a0(l +1),an> -ao(l -1), ton, 1 < n < AT - 1} 

is a basis of CDN. The one-dimensional orthogonal idempotent basis 
elements correspond to the one-dimensional invariant subspaces. The pairs 
of basis elements jj{an,tan}, 1 < n < N — 1 corresponds to the two- 
dimensional invariant subspaces. 

• N = 2M 

Jj{2ao(l + t),am, -a0(l - t),tam, -aM(l +1), 

O-M+m, ÖM(1 - t), taM+m,  1 < m < M - 1} 

is a basis of CDIM- The one-dimensional orthogonal idempotent basis 
elements correspond to the one-dimensional invariant subspaces. The pairs 
oFbasis elements jj{am,tam}, jj{aM+m,taM+m}, 1 < m < M - 1 
corresponds to the two-dimensional invariant subspaces. 
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Figure 1: Profile of the basis vectors for C(C32^ C2) 

60 

50 

40 

30 

20 

10 

^^^^^^^■■■^S^^^J»IIIM'"I|^^^I   ■ 

60 

50 

40 

30 

20 

10 

■■»1^«WVw 

20 40 60 20 40 60 

The matrix of the new basis block-diagonalizes the group convolution, with 
the computational complexity of 27V log N. The diagonal blocks correspond to 
the invariant subspaces, and are of sizes 1 or 2. The group convolution can be 
computed by the following algorithm. 

Denote the matrix of the new basis by r(Djv). For f,g£ CDN, let h = fg. 

1. Compute 7 = T{DN)f and g = T{DN)g. 

2. • For 2 J(N, compute h by 

Ä(0) =/(0)ff(0),      h(N) = f(N)g(N), 
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h{k) = f{k)g{k) + f{N + k)g{2N-k), 

h{k + N) = f{k)g{N + k) + f{N + k)g{N - k), 
l<k<N-l. 

• For N = 2M, compute h by 

MO) = /(O)ff(O),      h{M) = /(M)s(M), 

h(N) = f{N)g{N),      h(N + M) = f{N + M)g{N + M), 

h{k) = f(k)g(k) + f{N + k)g{2N - k), 

h{k + N) = f{k)g{N + k) + f{N + k)g(N - k), 
l<k<N-l, k^M. 

3. Compute h = T{DN)~1h. 

7.2    The Dihedral Group (CN x CN)^C2 

Denote the elements of CN X CN by ambn, 0 < m, n < N — 1, and characters 
of CN x CN by akßu 0<k,l<N-l, 

n=0 m=0 

(CV-X-CJVH C2 = (a, 6, t; aN = bN =t2 = 1, a6 = 6a, ta< = 6, *6t = a). 

7.2.1    Complete system of orthogonal idempotents 

Complete system of orthogonal idempotents of C2 are 

1       (l + t)/2, (1 - t)/2. 

Ca(afc/3«) = I {1})   otherwise 

A complete set of primitive idempotents of C {{CN X CJV)<$ C2) are 

^2 {afc/?fe(l +*)/2, afe&(l - t)/2, akßh 1 < k, I < N-I, k ^ I}. 

2mQfc/3fc(l +1) and ^jafe^fe(l — f), 1 < k < N — 1 are of dimension 1, while 
-ba.kßi, 1 <k, I < N — 1, k^l are of dimension 2. 
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7.2.2    Basis of orthogonal idempotents 

—2 {       a0ßo(l + 0/2, e*i/3o, • • •, <*N-ißo, N2 

a0ßi, aißi(l + t)/2, ...,ajv_i/?i, 

aoßff-i, aißN-i..., ajv_i/8jv-i(l + 0/2, 

a0/30(l - 0/2, taiA), • • • > taN-ißo, 

taoßi, axßx{l-t)/2, . ..,tajv_i/?i, 

taoßN-i, taißN-i • • •, aN-\ßN-i(l - t)/2}. 

The matrix T = T ((CAT X CJV)«$ C2) of change of bases is unitary and has 
computational complexity of AN2\ogN. Y block-diagonalizes the group convo- 
lution into blocks of sizes 1 or 2. The group convolution can be implemented 
by the following algorithm. For /, g 6 CDjv, let h = fg. 

1. Compute f = Tf and g = Tg. 

2. Compute h by 

h{m, m, 0) = f(m, m, 0)g(m, m, 0), 

h{m, m, 1) = f(m,m, l)g(m, m, 1),      0 <m< N — 1, 

h(m, n, 0) = /(m, n, 0)p(m, n, 0) + f(m, n, l)g(n, m, 1), 

/i(m, n, 1) = /(m, n, 0)3(m, n, 1) + /(m, n, l)p(n, m, 0), 

1 < m, n < N — 1, m^n. 

3. Compute /i = T_1/i. 

7.3    (CjvxC^^Ca 

G = (a,6,t; a" = 6N = f3 = 1, 

a6 = 6a,tom6ni2 = a-n6n-m). 

(Cjv x CAT)* = {akßi :0<k,l<N-l}, 
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afc/3( = ^exp(27rz^±^)a'"ö". 
m, n 

(C3)* = {ro, Ti, r2}, 

To     =     1 + t + t2, 

Ti     =     1 + Wt + W2t2, 

r2   =    l + w2t + wt2,     w = exp(2mß). 

7.4     (CN^C2)x(CN^C2) 

G = (a,b,s,t;aN = bN = s2 = t2, 

ab = ba,at = ta,sb = 6s,st = ts, sas = a~1,tbt = b~ ). 

Set 
a0 = 1 + S, CTi = 1 - s      T0 = 1 +1, 7i = 1 - t. 

• 2 J(N 

1-dimensional idempotents : 

{aoßoVoTQ,  CtoßoVoTl,  <Xoßo<TlTO,  OtoßoVlTi} 

2-dimensional idempotents : 

{amßoTo,amßoTi,a0ßn<ro,otoßn<T\,      l<m,n<N - 1}. 

4-dimensional idempotents : 

~~ {<*mßn ■ 1 < m, n < N - 1}. 

• N = 2M 

1-dimensional idempotents: 

{aoßocr0T0, aMßo<roTo, oc0ß0(TiTo, aMßo^\To, 

<XoßM<?OTo,  OCMßMaoTQ,  OtoßMVlTo,  O:MßMC\T0, 

ao/öo^oTi, aMßo0oTi, aoßocriTi, aMßo<7iTi, 

otoßM^oTi, aMßMaoTi, a0ßM^iTi> cxMßM(riT\}. 

2-dimensional idempotents: 

{amßoTo, CtmßMTo, CtmßoTl, UmßMT\ , OCoßmVO, OiMßm^O, Ctoßm<T\ , CLußm^X 

l<m<M-l, M + l<m,n<N-l}. 

4-dimensional idempotents: 

{amßn ■ 1 < m, n < M - 1, M + 1 < m, n < N - 1}. 
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Figure 2: Profile of basis vectors for C (Ce x Ce)-$ C2) 
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7.5    (CNxCN)3(C2xC2) 

G = {a, b, s, t; aN = bN = s2 = i2, 

ab = ba, st = ts, sambns = anbm, tambnt = a_mfe_n). 

(CN x CN)* = {cLkßi :0<k,l<N-l}, 

(C2 x C2)* = {OQTO, «Tiro, a0Ti, OIT{\. 
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• 2 J(N 

• N = 2M. 

Centralizers: 

C{amßn) = < 

f  (C2xC2)*, (m,n) = (0,0), (M,M), 
{It}, (m,n) = (0,M), (M,0), 
{1, s}, (m,n) = {k,k), 

{ {1}, (m,n) = {k,l), (fc,0), (0,fc), 

1 < fc, Z < M - 1, M + 1 < k, I < N - 1. 

1-dimensional idempotents: 

{ao^O^OTO, O!MßM<70T0, Otoßo<TlTo, «Affttf C^Tf), 

Otoßo&OTl, CtMßM&OTl, aoßo<7\Ti, OLMßM&lTi}. 

2-dimensional idempotents: 

{aoßM<*OTO, OiMßoVoTo, OtoßMPoTl, "M^OÖ'on}, 

{akßka0T0, ctkßkViTo}, 

{akßN-ka0To, akßN-kaiTi}, 

l<k<M-l,l + M<k<N-l. 

4-dimensional idempotents: 

{akßh akßo,a0ßk;l<k,l<M-l, 1 + M < k, l < N - 1}. 

7.6     (CNxCN)^CA 

G=(a,b,t; aN = bN =t4, 

ab = ba,tambnt3 = anb~m). 

8    Results of numerical experiments 

The following pictures illustrate the power of our methods to discriminate be- 
tween object and noise in image data. Generally, we expect that image infor- 
mation will distribute over direct sum factors with noise more prominent in low 
dimensional factors and object more concentrated in high dimensional factors. 
In all but one of the illustrations the object can be recovered from the highest 
dimensional factor with significant noise reduction as measured by the signal to 
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noise ratio (SNR). The one in which this is not the case, the second highest di- 
mensional factor becomes most significant. The anomaly reflects the directional 
bias of the imaging model and emphasizes the importance of the imaging model 
as a tool for highlighting certain image characteristics. 

The two-dimensional images consists of delta functions, lines of delta func- 
tions and crossing lines of delta functions embedded in noise. Delta functions 
have pixel support and should be distinguished from regional boundaries. The 
noise is at 30% variance to the object. The imaging model indexes each coor- 
dinate direction by the dihedral group Cg *$ Ci producing one, two and four- 
dimensional irreducible factors. 
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G = (C84C2)x(C8<$C2) 
Figure 2: Images in the following are 1) Single pixel of value 1, embedded in 
noise of values 0-0.25; 2) 1-dimensional irreducible factors; 3) 2-dimensional 
irreducible factors and 4) 4-dimensional irreducible factors. 
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G = (C84C2)x(C84C2) 
Figure 3: Images in the following are 1) Two pixels of value 1 and 1.5, embedded 
in noise of values 0-0.5; 2) 1-dimensional irreducible factors; 3) 2-dimensional 
irreducible factors and 4) 4-dimensional irreducible factors. 
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G = (C84C2)x(C84C2) 
Figure 4: Images in the following are 1) collection of pixels of value 1 embedded 
in noise of values 0-0.3; 2) 1-dimensional irreducible factors; 3) 2-dimensional 
irreducible factors and 4) 4-dimensional irreducible factors. 
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G = (C84C2)x(C84C2) 
Figure 5: Images in the following are 1) collection of pixels of value 1 embedded 
in noise of values 0-0.3; 2) 1-dimensional irreducible factors; 3) 2-dimensional 
irreducible factors and 4) 4-dimensional irreducible factors. 
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G=(C8$C2)x(C83C2) 
Figure 6: Images in the following are 1) collection of pixels of value 1 embedded 
in noise of values 0-0.3; 2) 1-dimensional irreducible factors; 3) 2-dimensional 
irreducible factors and 4) 4-dimensional irreducible factors. 
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The following pictures illustrate the power of our methods as a data reduc- 
tion tool for textures. Generally, textural information concentrates in low di- 
mensional factors with higher dimensional factors representing textural changes. 
The bias of the imaging model affects which factors concentrate information but 
not the number of coefficients required to encode the information. Generally 
by slightly modifying the imaging model or by repositioning the texture, most 
information upto some resolution can be placed in the lowest dimensional factor. 
Since the number of coefficients required to encode this factor is a small fraction 
of the number of coefficients describing the texture, significant data reduction 
is possible. In Figure 12, we display the 16 coefficients required to describe a 
32 x 32 coefficient texture. 
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G = (C8^C2)x(C84C2) 
Figure 7: Images in the quadrants are respectively 1) Simulated image of values 
0, 1, 2 and 3; 2) 1-dimensional irreducible factors; 3) 2-dimensional irreducible 
factors and 4) 4-dimensional irreducible factors. 
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G=(C84C2)x(Cs4C2) 
Figure 8: Images in the quadrants are respectively 1) Simulated image of values 
0-6; 2) 1-dimensional irreducible factors; 3) 2-dimensional irreducible factors 
and 4) 4-dimensional irreducible factors. 
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G = (C8^C2)x(C8^C2) 
Figure 9: Images in the following are 1) Simulated image of values 0-6 de- 
scribing texture with noise values of 0-.7 ; 2) 1-dimensional irreducible fac- 
tors; 3) 2-dimensional irreducible factors 4) 4-dimensional irreducible factors; 
5) 2-dimensional irreducible factors uniformly multiplied by 3; 6) 4-dimensional 
irreducible factors multiplied uniformly multiplied by 10. , 
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G=(Cs^C2)x(C8^C2) 
Figure 10:   Images in the following are 1) Simulated image of values 0, 1, 2 
describing texture with noise values of 0-0.25 ;  2) 1-dimensional irreducible 
factors; 3) 2-dimensional irreducible factors and 4) 4-dimensional irreducible 
factors. 
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G = (C8^C2)x(C8^C2) 
Figure 11:   Images in the following are 1) Simulated image of values 0, 1, 2 
describing texture with noise values of 0-0.25 ;  2)  1-dimensional irreducible 
factors; 3) 2-dimensional irreducible factors and 4) 4-dimensional irreducible 
factors. 
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G=(C84C2)x(Ca4C2) 
Figure 12: Images in the following are 1) Simulated image of value 10 describing 
a square with noise values of 0-0.25 ; 2) 1-dimensional irreducible factors; 3) 
2-dimensional irreducible factors and 4) 4-dimensional irreducible factors. 
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G = (C8^C2)x(Ca^C2) 
Figure 13: Images in the following are 1) Simulated image of value 10 describing 
a square with noise values of 0-0.25 ; 2) 1-dimensional irreducible factors; 3) 
2-dimensional irreducible factors and 4) 4-dimensional irreducible factors. 
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G=(C8^C2)x(Cs4C2) 
Figure 14: Images in the following are 1) Simulated image of value 10 describing 
a square with noise values of 0-0.25 ; 2) 1-dimensional irreducible factors; 3) 
2-dimensional irreducible factors and 4) 4-dimensional irreducible factors. 
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G = (CslC2)x(Ca<$C2) 
Figure 15: Images in the following are 1) Simulated image of value 10 describing 
a square with noise values of 0-0.25 ; 2) 1-dimensional irreducible factors; 3) 
2-dimensional irreducible factors and 4) 4-dimensional irreducible factors. 
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The following two figures illustrate the power of filtering in the coefficients 
of image expansions relative to the basis of translated idempotents to data 
compression and noise reduction. 

G = (Cl04C2)x{Cl0^C2) 
Figure 16: Images in the following are 1) Simulated image of value 10 describ- 
ing a square with noise values of 0-1 ; 2) Non-zeros coefficients describing the 
image; 3) Reconstruction using the 100 largest coefficients in the two larger di- 
mensional irreducible factors; 4) Location of the non-zeros coefficients used in 
the reconstruction. 
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G=(C10^C2)x(C10<3C2) 
Figure 17: Images in the following are 1) Simulated image of values of 5 and 
10 describing a square with noise values of 0-1 ; 2) Non-zeros coefficients de- 
scribing the image; 3) Reconstruction using the 8 largest coefficients in the one- 
dimensional irreducible factors; 4) Location of the non-zeros coefficients used in 
the reconstruction. 
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